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Abstract. – We study the interplay between amplifier noise and birefringent disorder in
the case of strongly nonlinear (soliton) type of transmission in optical fibers. Assuming both
noise and disorder to be weak we evaluate the probability distribution function (PDF) of the
Bit-Error-Rate (BER) for the values of BER that are much larger than the typical (average)
value. The PDF tail that describes probability of the system outage shows log-normal shape,
strongly dependent on the fiber length. We also discuss a simple timing shift technique capable
of the outage compensation.

Nonlinear information transmission in optical fibers when elementary bits are represented
by optical solitons constitutes a promising technology that has been a subject of intensive
research over the past decades [1, 2]. In ideal fibers the information carried by the solitons
would be transmitted without any loss. In practice, however, various impairments lead to in-
formation loss. Amplifier noise and birefringent disorder represent the two major impairments
in both linear and nonlinear transmission regimes. The noise generated by spontaneous emis-
sion in optical amplifiers is, therefore, short-correlated both in space and time. Birefringence
that stems from variations of the optical fiber core degree of ellipticity is sensitive to external
stresses and temperature changes, which leads to its substantial changes along the fiber line.
Birefringence is practically frozen, i.e. the typical time scale of the birefringence variations
is long compared to the time it takes for a pulse to pass the entire fiber line [3]. Therefore,
birefringence can be treated as time-independent disorder, short-correlated in space. The op-
tical communication system performance is usually measured by Bit-Error-Rate (BER) that
represents the probability of an incorrect bit identification at the system output. However,
because of the quasi-static nature of the birefringent disorder the system performance may
not be characterized in terms of a single number, e.g. some BER averaged over disorder re-
alizations. BER should be rather considered as a number, dependent on a given realization
of birefringent disorder, whereas the system performance should be characterized in terms of
the Probability Distribution Function (PDF) of BER, with the statistics being collected by
averaging over a large number of birefringent disorder realizations. Note, that the co-existence
of two very different randomness sources constitutes a common feature of many problems in
the general field of statistical physics of disordered systems, whose behavior is governed by
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a complex interplay between the short-correlated thermal noise and frozen structural disor-
der. Thus, in the spin glass theory the object, similar to the PDF of BER, which provides
an adequate description of the glassy system is represented by the so-called functional order
parameter [4].

Recently a new approach that describes joint effect of amplifier noise and birefringent
disorder has been developed and applied to the case of linear transmission [5]. It has been
shown that the PDF of BER has an algebraic or algebraic-like extended tail. It has been
also found [5] that various compensation tricks allow for partial suppression of the long tail.
In this manuscript we show that, similar to the linear case, the PDF of BER for the soliton
regime has an extended log-normal tail, however, the parametric dependence of this tail on
the fiber length is stronger compared to the bare (no-compensation) linear case. We also note
that the problem under consideration is of special interest in terms of theory of nonlinear
disordered systems, since we have been able to derive analytical results for the PDF of BER
using neither replica calculations nor “cavity” equation approaches [4]. The letter is organized
as follows. We first introduce and discuss equation describing soliton propagation in an optical
fiber in the presence of amplifier noise and birefringent disorder. We further evaluate the BER
produced by the amplifier noise for a given realization of birefringence disorder. Finally, the
PDF of BER is computed. We conclude the letter with a brief discussion of how the results
are modified if the timing jitter (“setting the clock”) compensation technique is applied.

The envelope of the electromagnetic field propagating along an optical fiber in the nonlinear
regime and in the presence of amplifier noise and birefringence disorder satisfies the following
equation [1, 6, 7] 

∂z + m̂(z)∂t − i∂2
t − 2i

∑
i=1,2

∣∣∣Ψ(i)
∣∣∣2


Ψ = ξ , (1)

represented in the dimensionless units. In Eq.(1) z, t, and ξ are the position along the fiber,
time measured in the reference frame traveling together with the soliton, and the amplifier
noise, respectively. The envelope Ψ is a two-component field, where the components stand for
two polarization states of the optical signal. Birefringent disorder is characterized by a 2 × 2
random Hermitian traceless matrix m̂. (A simple role played by the term that represents the
trace of m̂ will be discussed later in the text.) We assume that the terms ξ and m̂(z)∂tΨ are
both small in comparison with all the other terms in Eq. (1), since otherwise the fiber line may
not be used for reliable information transmission. The form of the nonlinear term appearing
on the right hand side of Eq. (1) corresponds to the so-called Manakov case [8], describing
evolution of the electrical field envelop at the length scales longer than characteristic length zc,
defined as a typical length scale of changes in the optical polarization [9]. Note, however, that
the major results on the PDF of BER, presented in the letter, are generic, i.e., they are not
restricted to the Manakov type of nonlinearity, which is chosen here primarily for the sake of
being specific. Eq.(1) constitutes a coarse-grain description of propagation where attenuation
is assumed to be fully compensated by amplification and the noise source to be distributed
homogeneously along the fiber. Such a description is adequate since the transmission system
length constitutes several thousand kilometers, whereas the distance between the amplifiers
is set approximately 50− 100km to compensate the losses. The additive noise ξ, generated in
optical amplifiers is zero in average and has Gaussian statistics [10] with the correlation time
much shorter than the pulse width. Therefore, the statistics of ξ is fully determined by its
two-point correlation function

〈ξ(i)(z1, t1)ξ(j)∗(z2, t2)〉 = Dξδijδ (z1 − z2) δ(t1 − t2), (2)
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where the coefficient Dξ characterizes the noise strength determined by the amplifier noise
figure [10]. Averaging over birefringent disorder is of a different nature. The birefringence
matrix, m̂, varies on time scales much longer than the pulse propagation time but shorter
than the overall system operation time. Therefore, the disorder statistics is collected over
different birefringence states of the same fiber at different times. Since m̂ is a hermitian and
traceless matrix it can be expanded in the Pauli matrices m̂(z) = hj(z)σ̂j with hj being a real
three-component field. This field is zero in average and short-correlated in z, since the typical
length scale of birefringence variations is small compared to the propagation distance Z. As
we will see, hj enters all the observables in an integral form and, according to the central limit
theorem (see, e.g., [11]), can be treated as a Gaussian random field described by the following
two-point correlation function

〈hi(z1)hj(z2)〉 = Dmδijδ(z1 − z2), (3)

where Dm characterizes the disorder strength.
In the ideal case, when noise and disorder are neglected, Eq. (1) is integrable [12]. If

disorder and noise are weak Eq.(1) can be analyzed in terms of the adiabatic (secular) per-
turbation theory, see e.g. [13, 14]. With a single ideal soliton as an initial (z = 0) condition,
one seeks for a solution of Eq.(1) in the following general form

(
Ψ(1)

Ψ(2)

)
= exp(iϕ+ iβt+ iσ̂1ν) exp(−iσ̂2µ)

(
η cosh−1[η(t− y)] + v1

v2

)
, (4)

where z-dependent parameters η, β, y, ϕ, ν, µ (originating from six localized modes of the ideal,
m̂ = 0, ξ = 0, problem) are modes, slowly changing in z, whereas v1,2 stand for the two
components of the continuous-spectrum radiation emitted by the soliton. Initial conditions at
z = 0, read v1,2(t; 0) = 0, η(0) = 1, β(0) = y(0) = ϕ(0) = µ(0) = ν(0) = 0. It can be shown
that the results presented in this letter do not depend on this specific choice of the initial
conditions for the parameters β, y, ϕ, ν, and µ. Obviously, Eq.(4) describes a single soliton,
the issue of multi-soliton interactions, e.g. of the type considered in [14] will not be addressed
in this letter.

Detection of a pulse at the system output that corresponds to z = Z requires a measure-
ment of the pulse intensity I

I =
∫

dtG(t) |Ψ(Z, t)|2 , (5)

where the function G(t) is a convolution of the electrical (current) filter function with the
sampling window function that is limiting the information slot. Ideally, I takes a distinct
value if the bit encodes “1” and is negligible if the bit encodes “0”. Both noise and disorder
force I to deviate from its ideal value. One declares that the output signal encodes 0/1 if
the value of I is smaller/larger than the decision threshold Id. The information is lost if the
output value of the bit differs from the input one. The probability of such event should be
small in a well-performing fiber, which means that both impairments typically cause only
small distortions to a pulse. As we will see below, this statement corresponds to the following
two conditions: DξZ

3 � 1, DmZ � 1.
In general one should consider two contributions to BER, one coming from the case where

a “1” bit evolves into “0” (B1→0), the other coming from the case where a “0” bit becomes
“1” (B0→1). However, as it follows from the forthcoming analysis and [16], for a long system,
Z � 1, the latter contribution is negligible compared to the former one. We therefore focus
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on the situation, where the initial value of the bit is “1”. The probability of losing a unitary
bit for a given disorder realization {m̂} is

B{m̂} = B1→0{m̂} =

Id∫
0

dI P (I|{m̂}) . (6)

Here P (I|{m̂}) is the probability to detect the output signal of intensity I, given that the
initial pulse is represented by a single ideal soliton and the birefringent disorder profile is fixed.
In the engineering practice BER is measured by collecting statistics over a large number of
initially identical pulses. Since different pulses experience different realizations of the noise,
averaging over many pulses is actually equivalent to over-the-noise averaging. Repeating the
measurement of B many times (each separated from the previous one by a time interval larger
than the characteristic time of the disorder variations) one constructs the PDF S(B) of B.
The PDF achieves its maximum at B0 that plays the role of typical value of B. Even though
average distortion of a pulse caused by the noise and disorder is weak, rare but violent events
may substantially affect the optical system performance. The probability of such rare events
is determined by S(B) taken at B � B0.

The PDF of the signal intensity is defined by

P (I|{m̂}) =

〈
δ

(
I −

∫
dtG(t) |Ψ(Z, t)|2

)〉
ξ

, (7)

where averaging is performed over the amplifier noise. Exact calculation of P (I|{m̂}), that
accounts for detailed evolution of the signal shape, parametrized by the set of slow modes
and radiation parameters introduced in Eq.(4), is fairly complicated. However, it can be
significantly simplified by noting that for 1 � Z � D

−1/3
ξ the dominant contribution to BER

in Eq. (6) originates from the slow mode, y, in Eq.(4) that corresponds to the soliton position
shift. Stated differently, in the leading approximation all other slow modes in Eq.(4) along
with the radiation components v1,2 can be neglected and the pulse intensity in Eq.(5) can
be evaluated by following the stochastic dynamics of the soliton position only. Following the
technique developed by Kaup [15], and described in, e.g. [16,17], one derives

∂zy≈2β+h3 +O(h2), (8)

∂zβ≈
∞∫

−∞
dt

Im
[
e−izξ(1)(z, t)

]
tanh(t)

cosh(t)
+O(h2), (9)

where Im
[
e−izξ(1)(z, t)

]
stands for the imaginary part of e−izξ(1)(z, t). The overall soliton

shift is a sum of two contributions, y = yξ +H3, where H3 ≡ ∫ Z

0
h3(z)dz, and yξ corresponds

to the solution of Eqs.(8,9) for h3(z) ≡ 0. Substituting the result into Eqs.(4,5) with v1,2 = 0
and η = 1, followed by averaging over ξ in Eq.(7), which is naturally translated into averaging
over yξ, one arrives at

P (I|{m̂}) ≈
∞∫

−∞

3dyξ√
8πDξZ3

exp

[
− 9y2

ξ

8DξZ3

]
× (10)

×δ (I−Ij(yξ +H3)) , Ij(y) ≡
∫

dt
G(t)

cosh2(t− y) .
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Note, that the Gaussian statistics of the yξ component of the soliton position shift (jitter) is
due to the so-called Elgin-Gordon-Haus effect [16,18,19]. The single-parametric approximation
used in deriving Eq.(10) will be justified later in the letter.

Starting with Eq.(6), and also making use of the weak-noise assumption DξZ
3 � 1 that

according to Eq.(9) can be interpreted as the statement that typical soliton jitter due to am-
plifier noise is weak, we derive B{m̂} ≈ P (Id|{m̂}). This implies that BER can be computed
using Eq.(10) with I replaced by Id. The δ-function reduces the resulting expression to the
sum of contributions, each corresponding to a root of the equation Ij(yd) = Id. It is clear
that the equation has actually two roots each corresponding to the pulse shifting to the right
and left borders of the information slot. For the sake of simplicity and clarity of presentation
we assume that the filter G is t-symmetric, in this case the two roots of the aforementioned
equation are ±yd, with the convention yd > 0. Then the BER adopts the following form

B{m̂} ≈ B0 cosh
[

9ydH3 +O(H2
3 )

4DξZ3

]
, (11)

B0 =
3

|I ′(yd)|√2πDξZ3
exp

[
− 9y2

d

8DξZ3

]
, (12)

where the “cosh” in Eq.(11) is constructed out of the two exponential contributions corre-
sponding to the two directions the pulse can leave the slot. H3 in Eq.(11) is an integral of h3

that, according to Eq.(3), makes it also a zero-mean Gaussian random variable. The tail of
the PDF of BER S(B) is calculated by first expressing H3 in terms of B using Eq. (11), and
then substituting the result into the Gaussian probability measure for H3 that follows from
Eq.(3). This results in

S(B) ∝ exp

[
− 8D2

ξZ
5

81Dmy2
d

ln2[B/B0]

]
, (13)

valid in the asymptotic region B � B0. Eq.(13) implies that the PDF S(B) has an ex-
tended tail. A similar observation has been made already for the linear transmission case [5],
however, it should be emphasized that the form of the extended tail in the nonlinear case is
parametrically different. Indeed, the Z-dependence of the factor in the exponent in Eq.(13)
is ∼ D2

ξZ
5/Dm, while in the linear case the dependence is ∼ D2

ξZ/Dm. The major difference
originates from very different mechanisms of the signal loss in the linear and nonlinear cases:
soliton jitter is a single major damaging factor in the nonlinear case, whereas in the linear
case the damage is spread among a large number of more or less equally important modes.

We are now in a position to clarify the assumptions leading to Eq.(13). First of all the
assumption Z � 1 means that while passing the distance Z the soliton acquires a large number
of the 2π-long phase turnovers. DξZ

3 � 1 means that the typical Elgin-Gordon-Haus jitter
is small, so that the typical change of the soliton amplitude is even weaker than the change of
the position, and the rare event of a pulse loss is primarily due to the soliton shift as a whole.
Fluctuations of birefringence that lead to the long PDF tail (13) are small compared to rare but
large fluctuations of the noise that produce the error; however, they are not small compared
to typical fluctuations of the noise. Stated in formal terms: H ≡ | ∫ Z

0
h(z)dz| � DξZ

3, while
H � yξ ≈ yd = O(1). The contribution to the pulse intensity that is O(H) originates solely
from Eq.(8), i.e., there are no other O(H) contributions coming from any other adiabatic
variables (except from y) and radiation. Strictly speaking radiation contributes in the ∼ H
order, however, this contribution contains an additional 1/Z factor making it unimportant.
Also note, that Eq.(13) has been derived under the assumption tr[m̂(z)] = 0. The only effect
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of the tr[m̂(z)] fluctuations is an additional shift in the soliton position, i.e., it is completely
accounted for through a simple renormalization of the Dm factor in Eq.(13).

We conclude the letter with a brief discussion of a simple strategy that guarantees an essen-
tial reduction of the large fluctuations of BER, described by Eq.(13). The major contribution
to Eq.(13) comes from an h-dependent jitter of the soliton position. Thus, making a specially-
tailored h(z)-dependent temporal shift, t→ t− tcl{h}, immediately prior to detection should
substantially reduce the outage. In the optical system jargon the timing shift is usually referred
to as “setting the clock” compensation. Here we do not discuss the details of such compen-
sation, simply assuming availability of an ideal device capable of performing the complete
compensation for the birefringence-induced jitter. Thus, a modified version of Eq.(11) that
accounts for the “setting the clock” compensation reads ln[B({m̂})/B0] = O(H2)/[DξZ

3],
where the leading second order in H contribution could emerge from corrections to the pulse
intensity due to the changes in the soliton parameters other than position shift and phase
velocity, as well as the direct contribution due to the radiation emitted by the soliton. A
detailed calculation shows that the leading O(H2) correction comes from the change in the
soliton amplitude, η, with the other O(H2) contributions being sub-leading in 1/Z. More-
over, as it has been shown in [14], the correction to the soliton amplitude due to PMD is
self-averaged at Z � 1: 1 − η = 2DmZ/3 + δη. Since δη ∝ H2/Z , one gets from Eq.(3) that
the PDF of δη is ∝ exp[−δη/Dm]. (See also [17] for detailed discussion of similar evaluation
of the soliton amplitude degradation caused by disorder in the second order dispersion coef-
ficient.) Therefore, the major effect of the change in the soliton amplitude is a shift of the
average BER, B0 → B̃0, due to the deterministic, 2DmZ/3, part of the amplitude change.
The shifted average BER is given by

B̃0 � B0 exp

[
− 3ydA(yd)Dm

4|I ′j(yd)|DξZ2

]
, (14)

where

A(yd) = −2
∫

dt
G(t+ yd) [t tanh t− 1]

cosh2 t
. (15)

Note that when DξZ
2 � Dm, the correction to the typical BER given by Eq.(14) is sub-

stantial. Describing the PDF of BER at the even larger B, B � B̃0, involves accounting for
fluctuations of BER due to δη. It is straightforward to check that all other corrections to
BER are suppressed by positive powers of 1/Z and/or DξZ

2/Dm small factors. By a similar
calculation to the one used in deriving Eq.(13) one obtains

− lnS(B) ∝ DξZ
3 ln

[
B̃0/B

]
/Dm, (16)

which shows that the PDF of BER tail is algebraic in the “setting the clock” compensation
case.
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